Search results
Results from the WOW.Com Content Network
This Wikipedia page provides a comprehensive list of boiling and freezing points for various solvents.
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
log 10 of Acetonitrile vapor pressure. ... Vapor-liquid Equilibrium for Acetonitrile/Methanol [4] P = 760 mmHg BP Temp. °C % by mole methanol liquid vapor 79.20: 2.5:
Acetonitrile is used mainly as a solvent in the purification of butadiene in refineries. Specifically, acetonitrile is fed into the top of a distillation column filled with hydrocarbons including butadiene, and as the acetonitrile falls down through the column, it absorbs the butadiene which is then sent from the bottom of the tower to a second separating tower.
Water is the most polar solvent in the reversed phase mobile phase; therefore, lowering the polarity of the mobile phase by adding modifiers enhances its elution strength. The two most widely used organic modifiers are acetonitrile and methanol, although acetonitrile is the more popular choice.
The polarity, dipole moment, polarizability and hydrogen bonding of a solvent determines what type of compounds it is able to dissolve and with what other solvents or liquid compounds it is miscible. Generally, polar solvents dissolve polar compounds best and non-polar solvents dissolve non-polar compounds best; hence "like dissolves like".
In reversed phase chromatography, the most polar compounds elute first with the more nonpolar compounds eluting later. The mobile phase is generally a mixture of water and miscible polarity-modifying organic solvent, such as methanol, acetonitrile or THF. Retention increases as the fraction of the polar solvent (water) in the mobile phase is ...
Here is a similar formula from the 67th edition of the CRC handbook. Note that the form of this formula as given is a fit to the Clausius–Clapeyron equation, which is a good theoretical starting point for calculating saturation vapor pressures: