Search results
Results from the WOW.Com Content Network
Ultrasound attenuation spectroscopy is a method for characterizing properties of fluids and dispersed particles. It is also known as acoustic spectroscopy. There is an international standard for this method. [1] [2] Measurement of attenuation coefficient versus ultrasound frequency yields
The pulse pressure amplitudes are measured along the central axis of the ultrasound beam. The P r is calculated by reducing it using an attenuation coefficient of 0.3 dB/cm/MHz. [2] MI is a unitless number that can be used as an index of cavitation bio-effects; a higher MI value indicates greater exposure.
The attenuation coefficient of a volume, denoted μ, is defined as [6] =, where Φ e is the radiant flux;; z is the path length of the beam.; Note that for an attenuation coefficient which does not vary with z, this equation is solved along a line from =0 to as:
Attenuation coefficients are used to quantify different media according to how strongly the transmitted ultrasound amplitude decreases as a function of frequency. The attenuation coefficient ( α {\displaystyle \alpha } ) can be used to determine total attenuation in dB in the medium using the following formula:
The template will display the table's title "Radiometry coefficients". 1 = <number> The template will display the table number as part of the table header in the following form: "Table <number>. Radiometry coefficients", where <number> is a placeholder for the number (or other table designation) given as parameter.
absorption coefficient is essentially (but not quite always) synonymous with attenuation coefficient; see attenuation coefficient for details; molar absorption coefficient or molar extinction coefficient , also called molar absorptivity , is the attenuation coefficient divided by molarity (and usually multiplied by ln(10), i.e., decadic); see ...
Ultrasound transmission tomography (UTT) is a form of tomography involving ultrasound. [1]Like X-ray tomography, the attenuation of the ultrasound as it passes through the object can be measured, but since the speed of sound is so much lower than the speed of light, the delay as it passes through the object can also be measured, allowing estimation of both the attenuation coefficient and the ...
Mass attenuation coefficients of selected elements for X-ray photons with energies up to 250 keV. The mass attenuation coefficient, or mass narrow beam attenuation coefficient of a material is the attenuation coefficient normalized by the density of the material; that is, the attenuation per unit mass (rather than per unit of distance).