enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sabatier reaction - Wikipedia

    en.wikipedia.org/wiki/Sabatier_reaction

    Paul Sabatier (1854-1941) winner of the Nobel Prize in Chemistry in 1912 and discoverer of the reaction in 1897. The Sabatier reaction or Sabatier process produces methane and water from a reaction of hydrogen with carbon dioxide at elevated temperatures (optimally 300–400 °C) and pressures (perhaps 3 MPa [1]) in the presence of a nickel catalyst.

  3. Catalytic oxidation - Wikipedia

    en.wikipedia.org/wiki/Catalytic_oxidation

    One challenge is that methanol is more easily oxidized than is methane. [3] Catalytic oxidation with oxygen or air is a major application of green chemistry. There are however many oxidations that cannot be achieved so straightforwardly. The conversion of propylene to propylene oxide is typically effected using hydrogen peroxide, not oxygen or air.

  4. Methanation - Wikipedia

    en.wikipedia.org/wiki/Methanation

    Methanation is the conversion of carbon monoxide and carbon dioxide (CO x) to methane (CH 4) through hydrogenation. The methanation reactions of CO x were first discovered by Sabatier and Senderens in 1902. [1] CO x methanation has many practical applications.

  5. Coal gasification - Wikipedia

    en.wikipedia.org/wiki/Coal_gasification

    In industrial chemistry, coal gasification is the process of producing syngas—a mixture consisting primarily of carbon monoxide (CO), hydrogen (H 2), carbon dioxide (CO 2), methane (CH 4), and water vapour (H 2 O)—from coal and water, air and/or oxygen. Historically, coal was gasified to produce coal gas, also known as "town gas".

  6. Methane reformer - Wikipedia

    en.wikipedia.org/wiki/Methane_reformer

    The reaction takes place in a single chamber where the methane is partially oxidized. The reaction is exothermic due to the oxidation. When the ATR uses carbon dioxide the H 2:CO ratio produced is 1:1; when the ATR uses steam the H 2:CO ratio produced is 2.5:1 The reactions can be described in the following equations, using CO 2:

  7. Steam reforming - Wikipedia

    en.wikipedia.org/wiki/Steam_reforming

    Autothermal reforming (ATR) uses oxygen and carbon dioxide or steam in a reaction with methane to form syngas. The reaction takes place in a single chamber where the methane is partially oxidized. The reaction is exothermic. When the ATR uses carbon dioxide, the H 2:CO ratio produced is 1:1; when the ATR uses steam, the H 2:CO ratio produced is ...

  8. Syngas - Wikipedia

    en.wikipedia.org/wiki/Syngas

    The second and third reactions then take place, producing an exothermic reaction—forming initially carbon dioxide and raising the temperature of the coke bed—followed by the second endothermic reaction, in which the latter is converted to carbon monoxide. The overall reaction is exothermic, forming "producer gas" (older terminology).

  9. Fischer–Tropsch process - Wikipedia

    en.wikipedia.org/wiki/Fischer–Tropsch_process

    Converting a mixture of H 2 and CO into aliphatic products is a multi-step reaction with several intermediate compounds. The growth of the hydrocarbon chain may be visualized as involving a repeated sequence in which hydrogen atoms are added to carbon and oxygen, the C–O bond is split and a new C–C bond is formed.