enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    The tensors are classified according to their type (n, m), where n is the number of contravariant indices, m is the number of covariant indices, and n + m gives the total order of the tensor. For example, a bilinear form is the same thing as a (0, 2)-tensor; an inner product is an example of a (0, 2)-tensor, but not all (0, 2)-tensors are inner ...

  3. Category:Tensors - Wikipedia

    en.wikipedia.org/wiki/Category:Tensors

    In mathematics, a tensor is a certain kind of geometrical entity and array concept. It generalizes the concepts of scalar, vector and linear operator, in a way that is independent of any chosen frame of reference. For example, doing rotations over axis does not affect at all the properties of tensors, if a transformation law is followed.

  4. Tensor algebra - Wikipedia

    en.wikipedia.org/wiki/Tensor_algebra

    In mathematics, the tensor algebra of a vector space V, denoted T(V) or T • (V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product.It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property ...

  5. Glossary of tensor theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_tensor_theory

    The earliest foundation of tensor theory – tensor index notation. [1] Order of a tensor The components of a tensor with respect to a basis is an indexed array. The order of a tensor is the number of indices needed. Some texts may refer to the tensor order using the term degree or rank. Rank of a tensor The rank of a tensor is the minimum ...

  6. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra. The outer product contrasts with: The dot product (a special case of " inner product "), which takes a pair of coordinate vectors as input and produces a scalar

  7. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    In mathematics, specifically multilinear algebra, a dyadic or dyadic tensor is a second order tensor, written in a notation that fits in with vector algebra. There are numerous ways to multiply two Euclidean vectors. The dot product takes in two vectors and returns a scalar, while the cross product [a] returns a pseudovector.

  8. Ricci calculus - Wikipedia

    en.wikipedia.org/wiki/Ricci_calculus

    [a] [1] [2] [3] It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), tensor calculus or tensor analysis developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900. [4]

  9. Cartesian tensor - Wikipedia

    en.wikipedia.org/wiki/Cartesian_tensor

    A more general notation is tensor index notation, which has the flexibility of numerical values rather than fixed coordinate labels. The Cartesian labels are replaced by tensor indices in the basis vectors e x ↦ e 1, e y ↦ e 2, e z ↦ e 3 and coordinates a x ↦ a 1, a y ↦ a 2, a z ↦ a 3.