Search results
Results from the WOW.Com Content Network
Because (a + 1) 2 = a, a + 1 is the unique solution of the quadratic equation x 2 + a = 0. On the other hand, the polynomial x 2 + ax + 1 is irreducible over F 4, but it splits over F 16, where it has the two roots ab and ab + a, where b is a root of x 2 + x + a in F 16. This is a special case of Artin–Schreier theory.
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
An integral quadratic form has integer coefficients, such as x 2 + xy + y 2; equivalently, given a lattice Λ in a vector space V (over a field with characteristic 0, such as Q or R), a quadratic form Q is integral with respect to Λ if and only if it is integer-valued on Λ, meaning Q(x, y) ∈ Z if x, y ∈ Λ.
One way to see this is to note that the graph of the function f(x) = x 2 is a parabola whose vertex is at the origin (0, 0). Therefore, the graph of the function f(x − h) = (x − h) 2 is a parabola shifted to the right by h whose vertex is at (h, 0), as shown in the top figure.
In mathematics, a quadratic function of a single variable is a function of the form [1] = + +,,where is its variable, and , , and are coefficients.The expression + + , especially when treated as an object in itself rather than as a function, is a quadratic polynomial, a polynomial of degree two.
In a totally ordered ring, x 2 ≥ 0 for any x. Moreover, x 2 = 0 if and only if x = 0. In a supercommutative algebra where 2 is invertible, the square of any odd element equals zero. If A is a commutative semigroup, then one has , = = =.
In general, whenever we multiply both sides of an equation by an expression involving variables, we introduce extraneous solutions wherever that expression is equal to zero. But it is not sufficient to exclude these values, because they may have been legitimate solutions to the original equation.
In two dimensions, 2x 1 + 2x 2 is the perimeter of a rectangle with sides of length x 1 and x 2. Similarly, 4 √ x 1 x 2 is the perimeter of a square with the same area, x 1 x 2, as that rectangle. Thus for n = 2 the AM–GM inequality states that a rectangle of a given area has the smallest perimeter if that rectangle is also a square.