Search results
Results from the WOW.Com Content Network
Zero to the power of zero, denoted as 0 0, is a mathematical expression that can take different values depending on the context. In certain areas of mathematics, such as combinatorics and algebra, 0 0 is conventionally defined as 1 because this assignment simplifies many formulas and ensures consistency in operations involving exponents.
The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. [3]
In certain cases, algorithms or other methods exist for proving that a given expression is non-zero, or of showing that the problem is undecidable.For example, if x 1, ..., x n are real numbers, then there is an algorithm [2] for deciding whether there are integers a 1, ..., a n such that
It also extends the notion of one-sided limits to the included endpoints of (half-)closed intervals, so the square root function = can have limit 0 as x approaches 0 from above: [,) = since for every ε > 0, we may take δ = ε such that for all x ≥ 0, if 0 < | x − 0 | < δ, then | f(x) − 0 | < ε.
Because (a + 1) 2 = a, a + 1 is the unique solution of the quadratic equation x 2 + a = 0. On the other hand, the polynomial x 2 + ax + 1 is irreducible over F 4, but it splits over F 16, where it has the two roots ab and ab + a, where b is a root of x 2 + x + a in F 16. This is a special case of Artin–Schreier theory.
Signum function = . In mathematics, the sign function or signum function (from signum, Latin for "sign") is a function that has the value −1, +1 or 0 according to whether the sign of a given real number is positive or negative, or the given number is itself zero.
so the polynomial function is identically equal to 0 for having any value in the modulo-2 system. However, the polynomial X − X 2 {\displaystyle X-X^{2}} is not the zero polynomial, since the coefficients, 0, 1 and −1, respectively, are not all zero.
Indeterminate form is a mathematical expression that can obtain any value depending on circumstances. In calculus, it is usually possible to compute the limit of the sum, difference, product, quotient or power of two functions by taking the corresponding combination of the separate limits of each respective function.