enow.com Web Search

  1. Ads

    related to: expanding single brackets and simplifying equations

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial expansion - Wikipedia

    en.wikipedia.org/wiki/Polynomial_expansion

    In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...

  3. Bracket (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Bracket_(mathematics)

    However, Square brackets, as in = 3, are sometimes used to denote the floor function, which rounds a real number down to the next integer. Conversely, some authors use outwards pointing square brackets to denote the ceiling function, as in ]π[ = 4. Braces, as in {π} < 1 / 7, may denote the fractional part of a real number.

  4. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    The methods for solving equations generally depend on the type of equation, both the kind of expressions in the equation and the kind of values that may be assumed by the unknowns. The variety in types of equations is large, and so are the corresponding methods. Only a few specific types are mentioned below.

  5. Equation - Wikipedia

    en.wikipedia.org/wiki/Equation

    An identity is an equation that is true for all possible values of the variable(s) it contains. Many identities are known in algebra and calculus. In the process of solving an equation, an identity is often used to simplify an equation, making it more easily solvable. In algebra, an example of an identity is the difference of two squares:

  6. Iverson bracket - Wikipedia

    en.wikipedia.org/wiki/Iverson_bracket

    Another use of the Iverson bracket is to simplify equations with special cases. For example, the formula (,) = = is valid for n > 1 but is off by ⁠ 1 / 2 ⁠ for n = 1.To get an identity valid for all positive integers n (i.e., all values for which () is defined), a correction term involving the Iverson bracket may be added: (,) = = (() + [=])

  7. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    In the early 16th century, the Italian mathematician Scipione del Ferro (1465–1526) found a method for solving a class of cubic equations, namely those of the form x 3 + mx = n. In fact, all cubic equations can be reduced to this form if one allows m and n to be negative, but negative numbers were not known to him at that time. Del Ferro kept ...

  8. Algebraic expression - Wikipedia

    en.wikipedia.org/wiki/Algebraic_expression

    An algebraic equation is an equation involving polynomials, for which algebraic expressions may be solutions. If you restrict your set of constants to be numbers, any algebraic expression can be called an arithmetic expression. However, algebraic expressions can be used on more abstract objects such as in Abstract algebra.

  9. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    Completing the square is the oldest method of solving general quadratic equations, used in Old Babylonian clay tablets dating from 1800–1600 BCE, and is still taught in elementary algebra courses today.

  1. Ads

    related to: expanding single brackets and simplifying equations