Search results
Results from the WOW.Com Content Network
Mitochondrial DNA is a small portion of the DNA contained in a eukaryotic cell; most of the DNA is in the cell nucleus, and, in plants and algae, the DNA also is found in plastids, such as chloroplasts. [3] Human mitochondrial DNA was the first significant part of the human genome to be sequenced. [4]
Mitochondrial diseases range in severity from asymptomatic to fatal, and are most commonly due to inherited rather than acquired mutations of mitochondrial DNA. A given mitochondrial mutation can cause various diseases depending on the severity of the problem in the mitochondria and the tissue the affected mitochondria are in.
Mitochondrial DNA is especially susceptible to oxidative damage, due to its proximity to the site of production of these species. [4] Damaging of mitochondrial DNA causes mutations, leading to production of ETC complexes, which do not function properly, increasing ROS production, increasing oxidative damage to macromolecules.
The near-absence of genetic recombination in mitochondrial DNA makes it a useful source of information for studying population genetics and evolutionary biology. [152] Because all the mitochondrial DNA is inherited as a single unit, or haplotype, the relationships between mitochondrial DNA from different individuals can be represented as a gene ...
It is an important factor in considering the severity of mitochondrial diseases. Because most eukaryotic cells contain many hundreds of mitochondria with hundreds of copies of mitochondrial DNA, it is common for mutations to affect only some mitochondria, leaving most unaffected.
Mitochondrial matrix has a pH of about 7.8, which is higher than the pH of the intermembrane space of the mitochondria, which is around 7.0–7.4. [5] Mitochondrial DNA was discovered by Nash and Margit in 1963. One to many double stranded mainly circular DNA is present in mitochondrial matrix. Mitochondrial DNA is 1% of total DNA of a cell.
Mitochondria are essentially universal in the eukaryotes, and with their own DNA somewhat resemble prokaryotic cells. Mitochondria are organelles in eukaryotic cells. The mitochondrion is commonly called "the powerhouse of the cell", [ 30 ] for its function providing energy by oxidising sugars or fats to produce the energy-storing molecule ATP .
Molecular phylogenetics (/ m ə ˈ l ɛ k j ʊ l ər ˌ f aɪ l oʊ dʒ ə ˈ n ɛ t ɪ k s, m ɒ-, m oʊ-/ [1] [2]) is the branch of phylogeny that analyzes genetic, hereditary molecular differences, predominantly in DNA sequences, to gain information on an organism's evolutionary relationships.