Search results
Results from the WOW.Com Content Network
Before the ready availability of statistical software having the ability to evaluate probability distribution functions accurately, continuity corrections played an important role in the practical application of statistical tests in which the test statistic has a discrete distribution: it had a special importance for manual calculations.
Let (Ω, Σ, P) be a probability space, let T be some interval of time, and let X : T × Ω → S be a stochastic process. For simplicity, the rest of this article will take the state space S to be the real line R, but the definitions go through mutatis mutandis if S is R n, a normed vector space, or even a general metric space.
In probability theory, the continuous mapping theorem states that continuous functions preserve limits even if their arguments are sequences of random variables. A continuous function, in Heine's definition, is such a function that maps convergent sequences into convergent sequences: if x n → x then g(x n) → g(x).
The continuum hypothesis was advanced by Georg Cantor in 1878, [1] and establishing its truth or falsehood is the first of Hilbert's 23 problems presented in 1900. The answer to this problem is independent of ZFC, so that either the continuum hypothesis or its negation can be added as an axiom to ZFC set theory, with the resulting theory being ...
with initial condition X 0 = x 0, where W t denotes the Wiener process, and suppose that we wish to solve this SDE on some interval of time [0, T]. Then the Euler–Maruyama approximation to the true solution X is the Markov chain Y defined as follows: Partition the interval [0, T] into N equal subintervals of width >:
Thus the notion of contiguity extends the concept of absolute continuity to the sequences of measures. The concept was originally introduced by Le Cam (1960) as part of his foundational contribution to the development of asymptotic theory in mathematical statistics. He is best known for the general concepts of local asymptotic normality and ...
An approach to "fix" problems with ML estimation is the use of regularization (or "continuity corrections"). [4] [5] In particular, in case of a logistic regression problem, the use of exact logistic regression or Firth logistic regression, a bias-reduction method based on a penalized likelihood, may be an option. [6]
Integration is a formalization of the problem of finding the area bound by a curve and the related problems of determining the length of a curve or volume enclosed by a surface. The basic strategy to solving problems of this type was known to the ancient Greeks and Chinese, and was known as the method of exhaustion. Generally speaking, the ...