enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Numerical continuation - Wikipedia

    en.wikipedia.org/wiki/Numerical_continuation

    A periodic motion is a closed curve in phase space. That is, for some period, ′ = (,), = (). The textbook example of a periodic motion is the undamped pendulum.. If the phase space is periodic in one or more coordinates, say () = (+), with a vector [clarification needed], then there is a second kind of periodic motions defined by

  3. Euler–Maruyama method - Wikipedia

    en.wikipedia.org/wiki/Euler–Maruyama_method

    with initial condition X 0 = x 0, where W t denotes the Wiener process, and suppose that we wish to solve this SDE on some interval of time [0, T]. Then the Euler–Maruyama approximation to the true solution X is the Markov chain Y defined as follows: Partition the interval [0, T] into N equal subintervals of width >:

  4. Continuous stochastic process - Wikipedia

    en.wikipedia.org/wiki/Continuous_stochastic_process

    Let (Ω, Σ, P) be a probability space, let T be some interval of time, and let X : T × Ω → S be a stochastic process. For simplicity, the rest of this article will take the state space S to be the real line R, but the definitions go through mutatis mutandis if S is R n, a normed vector space, or even a general metric space.

  5. Pressure-correction method - Wikipedia

    en.wikipedia.org/wiki/Pressure-correction_method

    The outer iterations comprise two steps: Solve the momentum equation for a provisional velocity based on the velocity and pressure of the previous outer loop. Plug the new newly obtained velocity into the continuity equation to obtain a correction.

  6. Continuous simulation - Wikipedia

    en.wikipedia.org/wiki/Continuous_simulation

    Continuous simulations are based on a set of differential equations. These equations define the peculiarity of the state variables, the environment factors so to speak, of a system. These parameters of a system change in a continuous way and thus change the state of the entire system. [6]

  7. Continuous-time stochastic process - Wikipedia

    en.wikipedia.org/wiki/Continuous-time_stochastic...

    In probability theory and statistics, a continuous-time stochastic process, or a continuous-space-time stochastic process is a stochastic process for which the index variable takes a continuous set of values, as contrasted with a discrete-time process for which the index variable takes only distinct values.

  8. Continuity correction - Wikipedia

    en.wikipedia.org/wiki/Continuity_correction

    Before the ready availability of statistical software having the ability to evaluate probability distribution functions accurately, continuity corrections played an important role in the practical application of statistical tests in which the test statistic has a discrete distribution: it had a special importance for manual calculations.

  9. Kolmogorov continuity theorem - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov_continuity_theorem

    In mathematics, the Kolmogorov continuity theorem is a theorem that guarantees that a stochastic process that satisfies certain constraints on the moments of its increments will be continuous (or, more precisely, have a "continuous version").