enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetric relation - Wikipedia

    en.wikipedia.org/wiki/Symmetric_relation

    Symmetric and antisymmetric relations. By definition, a nonempty relation cannot be both symmetric and asymmetric (where if a is related to b, then b cannot be related to a (in the same way)). However, a relation can be neither symmetric nor asymmetric, which is the case for "is less than or equal to" and "preys on").

  3. Quasitransitive relation - Wikipedia

    en.wikipedia.org/wiki/Quasitransitive_relation

    A relation R is quasitransitive if, and only if, it is the disjoint union of a symmetric relation J and a transitive relation P. [2] J and P are not uniquely determined by a given R; [3] however, the P from the only-if part is minimal. [4] As a consequence, each symmetric relation is quasitransitive, and so is each transitive relation. [5]

  4. Relation (philosophy) - Wikipedia

    en.wikipedia.org/wiki/Relation_(philosophy)

    Symmetric relations contrast with non-symmetric relations, for which this pair-like behavior is not always observed. An example is the love-relation: if Dave loves Sara then it is possible but not necessary that Sara loves Dave. A special case of non-symmetric relations is asymmetric relations, which only go one way.

  5. Equivalence relation - Wikipedia

    en.wikipedia.org/wiki/Equivalence_relation

    A reflexive and symmetric relation is a dependency relation (if finite), and a tolerance relation if infinite. A preorder is reflexive and transitive. A congruence relation is an equivalence relation whose domain X {\displaystyle X} is also the underlying set for an algebraic structure , and which respects the additional structure.

  6. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    Relations that satisfy certain combinations of the above properties are particularly useful, and thus have received names by their own. Equivalence relation A relation that is reflexive, symmetric, and transitive. It is also a relation that is symmetric, transitive, and serial, since these properties imply reflexivity. Orderings: Partial order

  7. Well-founded relation - Wikipedia

    en.wikipedia.org/wiki/Well-founded_relation

    A relation R is said to be reflexive if a R a holds for every a in the domain of the relation. Every reflexive relation on a nonempty domain has infinite descending chains, because any constant sequence is a descending chain. For example, in the natural numbers with their usual order ≤, we have 1 ≥ 1 ≥ 1 ≥ ....

  8. Asymmetric relation - Wikipedia

    en.wikipedia.org/wiki/Asymmetric_relation

    A relation is connex if and only if its complement is asymmetric. A non-example is the "less than or equal" relation ≤ {\displaystyle \leq } . This is not asymmetric, because reversing for example, x ≤ x {\displaystyle x\leq x} produces x ≤ x {\displaystyle x\leq x} and both are true.

  9. Motive (algebraic geometry) - Wikipedia

    en.wikipedia.org/wiki/Motive_(algebraic_geometry)

    finite separable extensions K of k → non-empty finite sets with a (continuous) transitive action of the absolute Galois group of k. which maps K to the (finite) set of embeddings of K into an algebraic closure of k. In Galois theory this functor is shown to be an equivalence of categories. Notice that fields are 0-dimensional.