Search results
Results from the WOW.Com Content Network
A right circular cone and an oblique circular cone A double cone (not shown infinitely extended) 3D model of a cone. A cone is a three-dimensional geometric shape that tapers smoothly from a flat base (frequently, though not necessarily, circular) to a point called the apex or vertex that is not contained in the base.
The cone over a closed interval I of the real line is a filled-in triangle (with one of the edges being I), otherwise known as a 2-simplex (see the final example). The cone over a polygon P is a pyramid with base P. The cone over a disk is the solid cone of classical geometry (hence the concept's name). The cone over a circle given by
Right circular solid cone: r = the radius of the cone's base h = the distance is from base to the apex Solid sphere: r = the radius of the sphere Solid hemisphere: r ...
A cone is a convex cone if + belongs to , for any positive scalars , , and any , in . [5] [6] A cone is convex if and only if +.This concept is meaningful for any vector space that allows the concept of "positive" scalar, such as spaces over the rational, algebraic, or (more commonly) the real numbers.
A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space.Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex.
In mathematics, especially homotopy theory, the mapping cone is a construction in topology analogous to a quotient space and denoted . Alternatively, it is also called the homotopy cofiber and also notated C f {\displaystyle Cf} .
In flat spacetime, the future light cone of an event is the boundary of its causal future and its past light cone is the boundary of its causal past. In a curved spacetime, assuming spacetime is globally hyperbolic, it is still true that the future light cone of an event includes the