enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Best-first search - Wikipedia

    en.wikipedia.org/wiki/Best-first_search

    Best-first search is a class of search algorithms which explores a graph by expanding the most promising node chosen according to a specified rule.. Judea Pearl described best-first search as estimating the promise of node n by a "heuristic evaluation function () which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to ...

  3. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    A* is an informed search algorithm, or a best-first search, meaning that it is formulated in terms of weighted graphs: starting from a specific starting node of a graph, it aims to find a path to the given goal node having the smallest cost (least distance travelled, shortest time, etc.).

  4. Iterative deepening A* - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_A*

    It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the remaining cost to get to the goal from the A* search algorithm. Since it is a depth-first search algorithm, its memory usage is lower than in A*, but unlike ordinary iterative deepening search, it ...

  5. Heuristic (computer science) - Wikipedia

    en.wikipedia.org/wiki/Heuristic_(computer_science)

    In such search problems, a heuristic can be used to try good choices first so that bad paths can be eliminated early (see alpha–beta pruning). In the case of best-first search algorithms, such as A* search, the heuristic improves the algorithm's convergence while maintaining its correctness as long as the heuristic is admissible.

  6. ID3 algorithm - Wikipedia

    en.wikipedia.org/wiki/ID3_algorithm

    It uses a greedy strategy by selecting the locally best attribute to split the dataset on each iteration. The algorithm's optimality can be improved by using backtracking during the search for the optimal decision tree at the cost of possibly taking longer. ID3 can overfit the training data. To avoid overfitting, smaller decision trees should ...

  7. Branch and bound - Wikipedia

    en.wikipedia.org/wiki/Branch_and_bound

    A stack (LIFO queue) will yield a depth-first algorithm. A best-first branch and bound algorithm can be obtained by using a priority queue that sorts nodes on their lower bound. [3] Examples of best-first search algorithms with this premise are Dijkstra's algorithm and its descendant A* search. The depth-first variant is recommended when no ...

  8. Search algorithm - Wikipedia

    en.wikipedia.org/wiki/Search_algorithm

    Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...

  9. Beam search - Wikipedia

    en.wikipedia.org/wiki/Beam_search

    Beam search with width 3 (animation) In computer science, beam search is a heuristic search algorithm that explores a graph by expanding the most promising node in a limited set. Beam search is a modification of best-first search that reduces its memory requirements. Best-first search is a graph search which orders all partial solutions (states ...