Search results
Results from the WOW.Com Content Network
The dipole magnetic field created by this permanent moment has a strength of 719 ± 2 nT at Ganymede's equator, [23] which should be compared with the Jovian magnetic field at the distance of Ganymede—about 120 nT. [95] The equatorial field of Ganymede is directed against the Jovian field, meaning reconnection is possible. The intrinsic field ...
The largest, Ganymede, is the largest moon in the Solar System and surpasses the planet Mercury in size (though not mass). Callisto is only slightly smaller than Mercury in size; the smaller ones, Io and Europa, are about the size of the Moon. The three inner moons — Io, Europa, and Ganymede — are in a 4:2:1 orbital resonance with
One way to decrease loss from sputtering is for the moon to have a strong magnetic field of its own that can deflect stellar wind and radiation belts. NASA's Galileo ' s measurements suggest that large moons can have magnetic fields; it found Ganymede has its own magnetosphere, even though its mass is only 2.5% of Earth's. [18]
The images provide new insights into the chemical composition of two of Jupiter’s moons.
(Ice has less tensile strength than rock, and is deformed at lower pressures and temperatures than rock.) The evidence is perhaps strongest for Ganymede, which has a magnetic field that indicates the fluid movement of electrically conducting material in its interior, though whether that fluid is a metallic core or a subsurface ocean is unknown ...
The size of solid bodies does not include an object's atmosphere. For example, Titan looks bigger than Ganymede, but its solid body is smaller. For the giant planets , the "radius" is defined as the distance from the center at which the atmosphere reaches 1 bar of atmospheric pressure.
Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun.
The main trait that sets magnetars apart from other neutron stars is a magnetic field 1,000 to 10,000 times stronger than an ordinary neutron star's magnetism and a trillion times that of the sun.