Search results
Results from the WOW.Com Content Network
The density of ice I h increases when cooled, down to about −211 °C (62 K; −348 °F); below that temperature, the ice expands again (negative thermal expansion). [ 5 ] [ 6 ] Besides ice I h , a small amount of ice I c may occasionally present in the upper atmosphere clouds. [ 140 ]
For the calculation of the thermodynamic properties of seawater and ice, TEOS-10 uses the specific Gibbs potential g(T,P)=G/m, G=F+pV, because the pressure is a more easily measurable property than density in a geophysical context.
This is due to hydrogen bonding dominating the intermolecular forces, which results in a packing of molecules less compact in the solid. The density of ice increases slightly with decreasing temperature and has a value of 0.9340 g/cm 3 at −180 °C (93 K). [7] When water freezes, it increases in volume (about 9% for fresh water). [8]
The density of dry ice increases with decreasing temperature and ranges between about 1.55 and 1.7 g/cm 3 (97 and 106 lb/cu ft) below 195 K (−78 °C; −109 °F). [3] The low temperature and direct sublimation to a gas makes dry ice an effective coolant, since it is colder than water ice and leaves no residue as it changes state. [4]
Ice: 916.7: At temperature < 0 °C Cooking oil: 910–930: ... Select a liquid from the list and calculate density as a function of temperature. Gas density ...
A Assuming an altitude of 194 metres above mean sea level (the worldwide median altitude of human habitation), an indoor temperature of 23 °C, a dewpoint of 9 °C (40.85% relative humidity), and 760 mmHg sea level–corrected barometric pressure (molar water vapor content = 1.16%). B Calculated values *Derived data by calculation.
If the reference material is water, then a substance with a relative density (or specific gravity) less than 1 will float in water. For example, an ice cube, with a relative density of about 0.91, will float. A substance with a relative density greater than 1 will sink. Temperature and pressure must be specified for both the sample and the ...
Specific heat capacity often varies with temperature, and is different for each state of matter. Liquid water has one of the highest specific heat capacities among common substances, about 4184 J⋅kg −1 ⋅K −1 at 20 °C; but that of ice, just below 0 °C, is only 2093 J⋅kg −1 ⋅K −1.