Search results
Results from the WOW.Com Content Network
In electrophysiology, the threshold potential is the critical level to which a membrane potential must be depolarized to initiate an action potential. In neuroscience , threshold potentials are necessary to regulate and propagate signaling in both the central nervous system (CNS) and the peripheral nervous system (PNS).
The inner circular layer is innervated by both excitatory and inhibitory motor neurons, while the outer longitudinal layer is innervated by mainly excitatory neurons. These action potentials cause the smooth muscle cells to contract or relax, depending on the particular stimulation the cells receive.
git show-ref lists all references. Some types are: heads: refers to an object locally, remotes: refers to an object which exists in a remote repository, stash: refers to an object not yet committed, meta: e.g., a configuration in a bare repository, user rights; the refs/meta/config namespace was introduced retrospectively, gets used by Gerrit, [71]
An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific cell rapidly rises and falls. [1] This depolarization then causes adjacent locations to similarly depolarize.
The action potential passes along the cell membrane causing the cell to contract, therefore the activity of the sinoatrial node results in a resting heart rate of roughly 60–100 beats per minute. All cardiac muscle cells are electrically linked to one another, by intercalated discs which allow the action potential to pass from one cell to the ...
Rheobase is a measure of membrane potential excitability. In neuroscience, rheobase is the minimal current amplitude of infinite duration that results in the depolarization threshold of the cell membranes being reached, such as an action potential or the contraction of a muscle. [1]
The bundle branches were separately described by Retzer and Braeunig as early as 1904, but their physiological function remained unclear and their role in the electrical conduction system of the heart remained unknown until Sunao Tawara published his monograph on Das Reizleitungssystem des Säugetierherzens (English: The Conduction System of the Mammalian Heart) in 1906. [4]
Once this initial action potential is initiated, principally at the axon hillock, it propagates down the length of the axon. Under normal conditions, the action potential would attenuate very quickly due to the porous nature of the cell membrane. To ensure faster and more efficient propagation of action potentials, the axon is myelinated ...