Search results
Results from the WOW.Com Content Network
Principal sources of Gaussian noise in digital images arise during acquisition e.g. sensor noise caused by poor illumination and/or high temperature, and/or transmission e.g. electronic circuit noise. [3] In digital image processing Gaussian noise can be reduced using a spatial filter, though when smoothing an image, an undesirable outcome may ...
Image noise can also originate in film grain and in the unavoidable shot noise of an ideal photon detector. Image noise is an undesirable by-product of image capture that obscures the desired information. Typically the term “image noise” is used to refer to noise in 2D images, not 3D images.
Gaussian noise; Generation-recombination noise; Image noise; Image noise reduction; Intermodulation noise; Internet background noise; ITU-R 468 noise weighting ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
This is a subjective speckle pattern. (Note that the color differences in the image are introduced by limitations of the camera system.) When a rough surface which is illuminated by a coherent light (e.g. a laser beam) is imaged, a speckle pattern is observed in the image plane; this is called a "subjective speckle pattern" – see image above.
In image processing, a Gaussian blur (also known as Gaussian smoothing) is the result of blurring an image by a Gaussian function (named after mathematician and scientist Carl Friedrich Gauss). It is a widely used effect in graphics software, typically to reduce image noise and reduce detail.
SNR is sometimes quantified in decibels (dB) of signal power relative to noise power, though in the imaging field the concept of "power" is sometimes taken to be the power of a voltage signal proportional to optical power; so a 20 dB SNR may mean either 10:1 or 100:1 optical power, depending on which definition is in use.
Noise having a continuous distribution, such as a normal distribution, can of course be white. It is often incorrectly assumed that Gaussian noise (i.e., noise with a Gaussian amplitude distribution – see normal distribution) necessarily refers to white noise, yet neither property implies the other. Gaussianity refers to the probability ...