Search results
Results from the WOW.Com Content Network
In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function , the Taylor polynomial is the truncation at the order k {\textstyle k} of the Taylor series of the function.
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.
Mihăilescu's theorem (number theory) Milliken–Taylor theorem (Ramsey theory) Milliken's tree theorem (Ramsey theory) Milman–Pettis theorem (Banach space) Min-max theorem (functional analysis) Minimax theorem (game theory) Minkowski's theorem (geometry of numbers) Minkowski's second theorem (geometry of numbers) Minkowski–Hlawka theorem ...
Given a twice continuously differentiable function of one real variable, Taylor's theorem for the case = states that = + ′ () + where is the remainder term. The linear approximation is obtained by dropping the remainder: () + ′ ().
Examples of functions that are not entire include the square root, the logarithm, the trigonometric function tangent, and its inverse, arctan. For these functions the Taylor series do not converge if x is far from b. That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor ...
For example, if a quantity is constant within the whole interval, approximating it with a second-order Taylor series will not increase the accuracy. In the case of a smooth function , the n th-order approximation is a polynomial of degree n , which is obtained by truncating the Taylor series to this degree.
Demonstration of this result is fairly straightforward under the assumption that () is differentiable near the neighborhood of and ′ is continuous at with ′ ().To begin, we use the mean value theorem (i.e.: the first order approximation of a Taylor series using Taylor's theorem):
The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems , linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems . [ 1 ]