Search results
Results from the WOW.Com Content Network
Two disjoint sets. In set theory in mathematics and formal logic, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. [1] For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two ...
In category theory the disjoint union is defined as a coproduct in the category of sets. As such, the disjoint union is defined up to an isomorphism, and the above definition is just one realization of the coproduct, among others. When the sets are pairwise disjoint, the usual union is another realization of the coproduct.
Pairwise independence does not imply mutual independence, as shown by the following example attributed to S. Bernstein. [3]Suppose X and Y are two independent tosses of a fair coin, where we designate 1 for heads and 0 for tails.
Pairwise generally means "occurring in pairs" or "two at a time." Pairwise may also refer to: Pairwise disjoint; Pairwise independence of random variables; Pairwise comparison, the process of comparing two entities to determine which is preferred; All-pairs testing, also known as pairwise testing, a software testing method.
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
For symmetric difference, the sets ( ) and () = ( ) are always disjoint. So these two sets are equal if and only if they are both equal to ∅ . {\displaystyle \varnothing .} Moreover, L ∖ ( M R ) = ∅ {\displaystyle L\,\setminus \,(M\,\triangle \,R)=\varnothing } if and only if L ∩ M ∩ R = ∅ and L ⊆ M ∪ R . {\displaystyle L\cap M ...
A partition of a set X is a set of non-empty subsets of X such that every element x in X is in exactly one of these subsets [2] (i.e., the subsets are nonempty mutually disjoint sets). Equivalently, a family of sets P is a partition of X if and only if all of the following conditions hold: [3]
The optimization version of the problem, maximum set packing, asks for the maximum number of pairwise disjoint sets in the list. It is a maximization problem that can be formulated naturally as an integer linear program , belonging to the class of packing problems .