Search results
Results from the WOW.Com Content Network
In Mercury's case, the planet completes three rotations for every two revolutions around the Sun, a 3:2 spin–orbit resonance. In the special case where an orbit is nearly circular and the body's rotation axis is not significantly tilted, such as the Moon, tidal locking results in the same hemisphere of the revolving object constantly facing ...
Earth's rotation imaged by Deep Space Climate Observatory, showing tilt. Earth's rotation or Earth's spin is the rotation of planet Earth around its own axis, as well as changes in the orientation of the rotation axis in space. Earth rotates eastward, in prograde motion.
Figure 1: An attractive force F(r) causes the blue planet to move on the cyan circle. The green planet moves three times faster and thus requires a stronger centripetal force, which is supplied by adding an attractive inverse-cube force. The red planet is stationary; the force F(r) is balanced by a
In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars (inertial space).
Nodal precession is the precession of the orbital plane of a satellite around the rotational axis of an astronomical body such as Earth.This precession is due to the non-spherical nature of a rotating body, which creates a non-uniform gravitational field.
The common noun ‘moon’ (not capitalized) is used to mean any natural satellite of the other planets. Tidal force is the combination of out-of-balance forces and accelerations of (mostly) solid bodies that raises tides in bodies of liquid (oceans), atmospheres, and strains planets' and satellites' crusts.
The torque-free precession rate of an object with an axis of symmetry, such as a disk, spinning about an axis not aligned with that axis of symmetry can be calculated as follows: [1] = where ω p is the precession rate, ω s is the spin rate about the axis of symmetry, I s is the moment of inertia about the axis of symmetry, I p is moment ...
In addition to the Moon and Sun, the other planets also cause a small movement of Earth's axis in inertial space, making the contrast in the terms lunisolar versus planetary misleading, so in 2006 the International Astronomical Union recommended that the dominant component be renamed the precession of the equator, and the minor component be ...