enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Floating-point error mitigation - Wikipedia

    en.wikipedia.org/wiki/Floating-point_error...

    Variable length arithmetic represents numbers as a string of digits of a variable's length limited only by the memory available. Variable-length arithmetic operations are considerably slower than fixed-length format floating-point instructions.

  3. Integer overflow - Wikipedia

    en.wikipedia.org/wiki/Integer_overflow

    The register width of a processor determines the range of values that can be represented in its registers. Though the vast majority of computers can perform multiple-precision arithmetic on operands in memory, allowing numbers to be arbitrarily long and overflow to be avoided, the register width limits the sizes of numbers that can be operated on (e.g., added or subtracted) using a single ...

  4. Type conversion - Wikipedia

    en.wikipedia.org/wiki/Type_conversion

    Conversely, precision can be lost when converting representations from integer to floating-point, since a floating-point type may be unable to exactly represent all possible values of some integer type. For example, float might be an IEEE 754 single precision type, which cannot represent the integer 16777217 exactly, while a 32-bit integer type ...

  5. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    Some programming languages such as Lisp, Python, Perl, Haskell, Ruby and Raku use, or have an option to use, arbitrary-precision numbers for all integer arithmetic. Although this reduces performance, it eliminates the possibility of incorrect results (or exceptions) due to simple overflow.

  6. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    The hardware to manipulate these representations is less costly than floating point, and it can be used to perform normal integer operations, too. Binary fixed point is usually used in special-purpose applications on embedded processors that can only do integer arithmetic, but decimal fixed point is common in commercial applications.

  7. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. 4,294,967,295 - Wikipedia

    en.wikipedia.org/wiki/4,294,967,295

    The number 4,294,967,295, equivalent to the hexadecimal value FFFFFFFF 16, is the maximum value for a 32-bit unsigned integer in computing. [6] It is therefore the maximum value for a variable declared as an unsigned integer (usually indicated by the unsigned codeword) in many programming languages running on modern computers. The presence of ...