enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    A multiplication algorithm is an algorithm (or method) to multiply two numbers. Depending on the size of the numbers, different algorithms are more efficient than others. Numerous algorithms are known and there has been much research into the t

  3. Booth's multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Booth's_multiplication...

    Booth's multiplication algorithm is a multiplication algorithm that multiplies two signed binary numbers in two's complement notation. The algorithm was invented by Andrew Donald Booth in 1950 while doing research on crystallography at Birkbeck College in Bloomsbury, London. [1] Booth's algorithm is of interest in the study of computer ...

  4. Cannon's algorithm - Wikipedia

    en.wikipedia.org/wiki/Cannon's_algorithm

    In computer science, Cannon's algorithm is a distributed algorithm for matrix multiplication for two-dimensional meshes first described in 1969 by Lynn Elliot Cannon. [1] [2]It is especially suitable for computers laid out in an N × N mesh. [3]

  5. Double-ended queue - Wikipedia

    en.wikipedia.org/wiki/Double-ended_queue

    One example where a deque can be used is the work stealing algorithm. [9] This algorithm implements task scheduling for several processors. A separate deque with threads to be executed is maintained for each processor. To execute the next thread, the processor gets the first element from the deque (using the "remove first element" deque operation).

  6. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's method. In particular, if either exp {\displaystyle \exp } or log {\displaystyle \log } in the complex domain can be computed with some complexity, then that complexity is ...

  7. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    Classical modular multiplication reduces the double-width product ab using division by N and keeping only the remainder. This division requires quotient digit estimation and correction. The Montgomery form, in contrast, depends on a constant R > N which is coprime to N, and the only division necessary in Montgomery multiplication is division by R.

  8. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    Karatsuba multiplication of az+b and cz+d (boxed), and 1234 and 567 with z=100. Magenta arrows denote multiplication, amber denotes addition, silver denotes subtraction and cyan denotes left shift. (A), (B) and (C) show recursion with z=10 to obtain intermediate values. The Karatsuba algorithm is a fast multiplication algorithm.

  9. Wallace tree - Wikipedia

    en.wikipedia.org/wiki/Wallace_tree

    As making the partial products is () and the final addition is (⁡), the total multiplication is (⁡), not much slower than addition. From a complexity theoretic perspective, the Wallace tree algorithm puts multiplication in the class NC 1. The downside of the Wallace tree, compared to naive addition of partial products, is its much higher ...