enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bisection - Wikipedia

    en.wikipedia.org/wiki/Bisection

    An angle bisector divides the angle into two angles with equal measures. An angle only has one bisector. Each point of an angle bisector is equidistant from the sides of the angle. The 'interior' or 'internal bisector' of an angle is the line, half-line, or line segment that divides an angle of less than 180° into two equal angles.

  3. Angle bisector theorem - Wikipedia

    en.wikipedia.org/wiki/Angle_bisector_theorem

    The angle bisector theorem is commonly used when the angle bisectors and side lengths are known. It can be used in a calculation or in a proof. An immediate consequence of the theorem is that the angle bisector of the vertex angle of an isosceles triangle will also bisect the opposite side.

  4. Constructions in hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Constructions_in...

    Consider a given angle ᗉ IAI' ≠ π /2 radians whose angle bisector is sought. This results in two different cases: either ᗉ IAI' < π /2 radians or ᗉ IAI' > π /2 radians. [3] For both cases a hyperbolic ruler is needed to construct a line BI' where BI' is perpendicular to AI and parallel to AI'. Also, construct a line B'I where B'I is ...

  5. Perpendicular bisector construction of a quadrilateral

    en.wikipedia.org/wiki/Perpendicular_bisector...

    The perpendicular bisector construction can be reversed via isogonal conjugation. [3] That is, given (+) , it is possible to ... be the angles of () ...

  6. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    The locus of points equidistant from two given points is a straight line that is called the perpendicular bisector of the line segment connecting the points. The perpendicular bisectors of any two sides of a triangle intersect in exactly one point. This point must be equidistant from the vertices of the triangle.)

  7. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    The perpendicular bisectors of all chords of a circle are concurrent at the center of the circle. The lines perpendicular to the tangents to a circle at the points of tangency are concurrent at the center. All area bisectors and perimeter bisectors of a circle are diameters, and they are concurrent at the circle's center.

  8. Incenter - Wikipedia

    en.wikipedia.org/wiki/Incenter

    A line that is an angle bisector is equidistant from both of its lines when measuring by the perpendicular. At the point where two bisectors intersect, this point is perpendicularly equidistant from the final angle's forming lines (because they are the same distance from this angles opposite edge), and therefore lies on its angle bisector line.

  9. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    Moreover, one of the two diagonals (the symmetry axis) is the perpendicular bisector of the other, and is also the angle bisector of the two angles it meets. [1] Because of its symmetry, the other two angles of the kite must be equal.