Search results
Results from the WOW.Com Content Network
Reactive nitrogen ("Nr"), also known as fixed nitrogen [1], refers to all forms of nitrogen present in the environment except for molecular nitrogen (N 2 ). [ 2 ] While nitrogen is an essential element for life on Earth, molecular nitrogen is comparatively unreactive, and must be converted to other chemical forms via nitrogen fixation before it ...
Nitrogen gas is an industrial gas produced by the fractional distillation of liquid air, or by mechanical means using gaseous air (pressurised reverse osmosis membrane or pressure swing adsorption). Nitrogen gas generators using membranes or pressure swing adsorption (PSA) are typically more cost and energy efficient than bulk-delivered ...
Nitrogen is present in the environment in a wide variety of chemical forms including organic nitrogen, ammonium (NH + 4), nitrite (NO − 2), nitrate (NO − 3), nitrous oxide (N 2 O), nitric oxide (NO) or inorganic nitrogen gas (N 2). Organic nitrogen may be in the form of a living organism, humus or in the intermediate products of organic ...
Nevertheless, nitrogen gas does react with the alkali metal lithium to form compound lithium nitride (Li 3 N), even under ordinary conditions. Under high pressures and temperatures and with the right catalysts, nitrogen becomes more reactive; the Haber process uses such conditions to produce ammonia from atmospheric nitrogen. [3]
By contrast, the second three tree species, oak, beech and hickory, are associated with microbes that "absorb reactive nitrogen oxides," and thus can have a positive impact on the nitrogen oxide component of air quality. Nitrogen oxide release from forest soils is expected to be highest in Indiana, Illinois, Michigan, Kentucky and Ohio. [19]
The term inert gas is context-dependent because several of the inert gases, including nitrogen and carbon dioxide, can be made to react under certain conditions. [1] [2] Purified argon gas is the most commonly used inert gas due to its high natural abundance (78.3% N 2, 1% Ar in air) [3] and low relative cost.
Before them, in 1784, the English chemist and physicist Henry Cavendish had discovered that air contains a small proportion of a substance less reactive than nitrogen. [10] A century later, in 1895, Lord Rayleigh discovered that samples of nitrogen from the air were of a different density than nitrogen resulting from chemical reactions.
The gas mixture is cooled to 450 °C in a heat exchanger using water, freshly supplied gases, and other process streams. The ammonia also condenses and is separated in a pressure separator. Unreacted nitrogen and hydrogen are then compressed back to the process by a circulating gas compressor, supplemented with fresh gas, and fed to the reactor ...