Search results
Results from the WOW.Com Content Network
Engine displacement is the measure of the cylinder volume swept by all of the pistons of a piston engine, excluding the combustion chambers. [1] It is commonly used as an expression of an engine's size, and by extension as an indicator of the power (through mean effective pressure and rotational speed ) an engine might be capable of producing ...
Having a constant diameter, measured at varying angles around the shape, is often considered to be a simple measurement of roundness.This is misleading. [3]Although constant diameter is a necessary condition for roundness, it is not a sufficient condition for roundness: shapes exist that have constant diameter but are far from round.
This formula holds whether or not the cylinder is a right cylinder. [7] This formula may be established by using Cavalieri's principle. A solid elliptic right cylinder with the semi-axes a and b for the base ellipse and height h. In more generality, by the same principle, the volume of any cylinder is the product of the area of a base and the ...
Sphericity is a measure of how closely the shape of an object resembles that of a perfect sphere. For example, the sphericity of the balls inside a ball bearing determines the quality of the bearing, such as the load it can bear or the speed at which it can turn without failing. Sphericity is a specific example of a compactness measure of a shape.
Stroke ratio, today universally defined as bore/stroke ratio, is a term to describe the ratio between cylinder bore diameter and piston stroke length in a reciprocating piston engine.
The equilateral cylinder is characterized by being a right circular cylinder in which the diameter of the base is equal to the value of the height (geratrix). [ 4 ] Then, assuming that the radius of the base of an equilateral cylinder is r {\displaystyle r\,} then the diameter of the base of this cylinder is 2 r {\displaystyle 2r\,} and its ...
The hydraulic diameter, D H, is a commonly used term when handling flow in non-circular tubes and channels. Using this term, one can calculate many things in the same way as for a round tube. When the cross-section is uniform along the tube or channel length, it is defined as [1] [2] =, where
The diameter or metric diameter of a subset of a metric space is the least upper bound of the set of all distances between pairs of points in the subset. Explicitly, if S {\displaystyle S} is the subset and if ρ {\displaystyle \rho } is the metric , the diameter is diam ( S ) = sup x , y ∈ S ρ ( x , y ) . {\displaystyle \operatorname ...