Search results
Results from the WOW.Com Content Network
The stability of fixed points of a system of constant coefficient linear differential equations of first order can be analyzed using the eigenvalues of the corresponding matrix. An autonomous system ′ =, where x(t) ∈ R n and A is an n×n matrix with real entries, has a constant solution =
In mathematics, structural stability is a fundamental property of a dynamical system which means that the qualitative behavior of the trajectories is unaffected by small perturbations (to be exact C 1-small perturbations). Examples of such qualitative properties are numbers of fixed points and periodic orbits (but not their periods
Let : be a smooth map with hyperbolic fixed point at .We denote by () the stable set and by () the unstable set of .. The theorem [2] [3] [4] states that is a smooth manifold and its tangent space has the same dimension as the stable space of the linearization of at .
In mathematics, a fixed point (sometimes shortened to fixpoint), also known as an invariant point, is a value that does not change under a given transformation. Specifically, for functions, a fixed point is an element that is mapped to itself by the function. Any set of fixed points of a transformation is also an invariant set.
Randomly selected points of the 2D phase space converge exponentially to a 1D center manifold on which dynamics are slow (non exponential). Studying dynamics of the center manifold determines the stability of the non-hyperbolic fixed point at the origin. The center manifold of a dynamical system is based upon an equilibrium point of that
Bifurcation theory considers a structure in phase space (typically a fixed point, a periodic orbit, or an invariant torus) and studies its behavior as a function of the parameter μ. At the bifurcation point the structure may change its stability, split into new structures, or merge with other structures.
The standard example is the action of C * on the plane C 2 defined as (,) = (,).The weight in the x-direction is 1 and the weight in the y-direction is -1.Thus by the Hilbert–Mumford criterion, a non-zero point on the x-axis admits 1 as its only weight, and a non-zero point on the y-axis admits -1 as its only weight, so they are both unstable; a general point in the plane admits both 1 and ...
One can see spiral from attracting fixed point to repelling fixed point ( z= 0) which is a place with high density of level curves. The orbit of an equilibrium point is a constant orbit. Stability of orbits