enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. History of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/History_of_artificial...

    Artificial neural networks (ANNs) are models created using machine learning to perform a number of tasks.Their creation was inspired by biological neural circuitry. [1] [a] While some of the computational implementations ANNs relate to earlier discoveries in mathematics, the first implementation of ANNs was by psychologist Frank Rosenblatt, who developed the perceptron. [1]

  3. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning.The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  4. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...

  5. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    A network is typically called a deep neural network if it has at least two hidden layers. [3] Artificial neural networks are used for various tasks, including predictive modeling, adaptive control, and solving problems in artificial intelligence. They can learn from experience, and can derive conclusions from a complex and seemingly unrelated ...

  6. Deep belief network - Wikipedia

    en.wikipedia.org/wiki/Deep_belief_network

    In machine learning, a deep belief network (DBN) is a generative graphical model, or alternatively a class of deep neural network, composed of multiple layers of latent variables ("hidden units"), with connections between the layers but not between units within each layer.

  7. Deep backward stochastic differential equation method

    en.wikipedia.org/wiki/Deep_backward_stochastic...

    The Deep BSDE approach leverages the powerful nonlinear fitting capabilities of deep learning, approximating the solution of BSDEs by constructing neural networks. The specific idea is to represent the solution of a BSDE as the output of a neural network and train the network to approximate the solution. [1]

  8. Connectionism - Wikipedia

    en.wikipedia.org/wiki/Connectionism

    In 2014, Alex Graves and others from DeepMind published a series of papers describing a novel Deep Neural Network structure called the Neural Turing Machine [48] able to read symbols on a tape and store symbols in memory. Relational Networks, another Deep Network module published by DeepMind, are able to create object-like representations and ...

  9. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]