enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    [3] [4] In the twentieth century, polynomial regression played an important role in the development of regression analysis, with a greater emphasis on issues of design and inference. [5] More recently, the use of polynomial models has been complemented by other methods, with non-polynomial models having advantages for some classes of problems.

  3. Linear trend estimation - Wikipedia

    en.wikipedia.org/wiki/Linear_trend_estimation

    All have the same trend, but more filtering leads to higher r 2 of fitted trend line. The least-squares fitting process produces a value, r-squared (r 2), which is 1 minus the ratio of the variance of the residuals to the variance of the dependent variable. It says what fraction of the variance of the data is explained by the fitted trend line.

  4. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    A trend line could simply be drawn by eye through a set of data points, but more properly their position and slope is calculated using statistical techniques like linear regression. Trend lines typically are straight lines, although some variations use higher degree polynomials depending on the degree of curvature desired in the line.

  5. Local regression - Wikipedia

    en.wikipedia.org/wiki/Local_regression

    Local regression or local polynomial regression, [1] also known as moving regression, [2] is a generalization of the moving average and polynomial regression. [3] Its most common methods, initially developed for scatterplot smoothing, are LOESS (locally estimated scatterplot smoothing) and LOWESS (locally weighted scatterplot smoothing), both pronounced / ˈ l oʊ ɛ s / LOH-ess.

  6. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  7. Trend analysis - Wikipedia

    en.wikipedia.org/wiki/Trend_analysis

    In some fields of study, the term has more formally defined meanings. [ 1 ] [ 2 ] [ 3 ] Although trend analysis is often used to predict future events, it could be used to estimate uncertain events in the past, such as how many ancient kings probably ruled between two dates, based on data such as the average years which other known kings reigned.

  8. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  9. Theil–Sen estimator - Wikipedia

    en.wikipedia.org/wiki/Theil–Sen_estimator

    A variation of the Theil–Sen estimator, the repeated median regression of Siegel (1982), determines for each sample point (x i, y i), the median m i of the slopes (y j − y i)/(x j − x i) of lines through that point, and then determines the overall estimator as the median of these medians.