enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gene expression programming - Wikipedia

    en.wikipedia.org/wiki/Gene_expression_programming

    Modify chromosomes using genetic operators; Go to step 5. The first four steps prepare all the ingredients that are needed for the iterative loop of the algorithm (steps 5 through 10). Of these preparative steps, the crucial one is the creation of the initial population, which is created randomly using the elements of the function and terminal ...

  3. Crossover (evolutionary algorithm) - Wikipedia

    en.wikipedia.org/wiki/Crossover_(evolutionary...

    Crossover in evolutionary algorithms and evolutionary computation, also called recombination, is a genetic operator used to combine the genetic information of two parents to generate new offspring. It is one way to stochastically generate new solutions from an existing population, and is analogous to the crossover that happens during sexual ...

  4. Mutation (evolutionary algorithm) - Wikipedia

    en.wikipedia.org/wiki/Mutation_(evolutionary...

    The classic example of a mutation operator of a binary coded genetic algorithm (GA) involves a probability that an arbitrary bit in a genetic sequence will be flipped from its original state. A common method of implementing the mutation operator involves generating a random variable for each bit in a sequence.

  5. Genetic algorithm - Wikipedia

    en.wikipedia.org/wiki/Genetic_algorithm

    An online interactive Genetic Algorithm tutorial for a reader to practise or learn how a GA works: Learn step by step or watch global convergence in batch, change the population size, crossover rates/bounds, mutation rates/bounds and selection mechanisms, and add constraints.

  6. Genetic programming - Wikipedia

    en.wikipedia.org/wiki/Genetic_programming

    Genetic programming (GP) is an evolutionary algorithm, an artificial intelligence technique mimicking natural evolution, which operates on a population of programs. It applies the genetic operators selection according to a predefined fitness measure , mutation and crossover .

  7. Neuroevolution of augmenting topologies - Wikipedia

    en.wikipedia.org/wiki/Neuroevolution_of...

    The competing conventions problem arises when there is more than one way of representing information in a phenotype. For example, if a genome contains neurons A, B and C and is represented by [A B C], if this genome is crossed with an identical genome (in terms of functionality) but ordered [C B A] crossover will yield children that are missing information ([A B A] or [C B C]), in fact 1/3 of ...

  8. Evolution strategy - Wikipedia

    en.wikipedia.org/wiki/Evolution_strategy

    The resulting algorithm is therefore invariant with respect to monotonic transformations of the objective function. The simplest and oldest [ 1 ] evolution strategy ( 1 + 1 ) {\displaystyle {\mathit {(1+1)}}} operates on a population of size two: the current point (parent) and the result of its mutation.

  9. Edge recombination operator - Wikipedia

    en.wikipedia.org/wiki/Edge_recombination_operator

    ERO is based on an adjacency matrix, which lists the neighbors of each node in any parent.. ERO crossover. For example, in a travelling salesman problem such as the one depicted, the node map for the parents CABDEF and ABCEFD (see illustration) is generated by taking the first parent, say, 'ABCEFD' and recording its immediate neighbors, including those that roll around the end of the string.