Search results
Results from the WOW.Com Content Network
Orthographic projection (also orthogonal projection and analemma) [a] is a means of representing three-dimensional objects in two dimensions.Orthographic projection is a form of parallel projection in which all the projection lines are orthogonal to the projection plane, [2] resulting in every plane of the scene appearing in affine transformation on the viewing surface.
An example of a multiview orthographic drawing from a US Patent (1913), showing two views of the same object. Third angle projection is used. In third-angle projection , the object is conceptually located in quadrant III, i.e. it is positioned below and behind the viewing planes, the planes are transparent , and each view is pulled onto the ...
Example of the use of descriptive geometry to find the shortest connector between two skew lines. The red, yellow and green highlights show distances which are the same for projections of point P. Given the X, Y and Z coordinates of P, R, S and U, projections 1 and 2 are drawn to scale on the X-Y and X-Z planes, respectively.
In an oblique pictorial drawing, the displayed angles separating the coordinate axes as well as the foreshortening factors (scaling) are arbitrary. The distortion created thereby is usually attenuated by aligning one plane of the imaged object to be parallel with the plane of projection, creating a truly-formed, full-size image of the chosen plane.
The black dimensions are the true lengths as found in an orthographic projection. The red dimensions are used when drawing with the isometric drawing method. The same 3D shapes drawn in isometric projection would appear smaller; an isometric projection will show the object's sides foreshortened, by approximately 80%.
Axonometric projections show an image of an object as viewed from a skew direction in order to reveal all three directions (axes) of space in one picture. [2] Axonometric projections may be either orthographic or oblique. Axonometric instrument drawings are often used to approximate graphical perspective projections, but there is attendant ...
In a general axonometry of a sphere the image contour is an ellipse. The contour of a sphere is a circle only in an orthogonal axonometry. But, as the engineer projection and the standard isometry are scaled orthographic projections, the contour of a sphere is a circle in these cases, as well.
Direct application of the orthographic projection yields scattered points in (x, y), which creates problems for plotting and numerical integration. One solution is to start from the (x, y) projection plane and construct the image from the values defined in (λ, φ) by using the inverse formulas of the orthographic projection.