Search results
Results from the WOW.Com Content Network
A basic motion planning problem is to compute a continuous path that connects a start configuration S and a goal configuration G, while avoiding collision with known obstacles. The robot and obstacle geometry is described in a 2D or 3D workspace , while the motion is represented as a path in (possibly higher-dimensional) configuration space .
A solution of the falling cat problem is a curve in the configuration space that is horizontal with respect to the connection (that is, it is admissible by the physics) with prescribed initial and final configurations. Finding an optimal solution is an example of optimal motion planning. [11] [12]
The curve of fastest descent is not a straight or polygonal line (blue) but a cycloid (red).. In physics and mathematics, a brachistochrone curve (from Ancient Greek βράχιστος χρόνος (brákhistos khrónos) 'shortest time'), [1] or curve of fastest descent, is the one lying on the plane between a point A and a lower point B, where B is not directly below A, on which a bead slides ...
In geometry, the term Dubins path typically refers to the shortest curve that connects two points in the two-dimensional Euclidean plane (i.e. x-y plane) with a constraint on the curvature of the path and with prescribed initial and terminal tangents to the path, and an assumption that the vehicle traveling the path can only travel forward.
While geostrophic motion refers to the wind that would result from an exact balance between the Coriolis force and horizontal pressure-gradient forces, [1] quasi-geostrophic (QG) motion refers to flows where the Coriolis force and pressure gradient forces are almost in balance, but with inertia also having an effect. [2]
The tautochrone problem is a special case of Abel's mechanical problem when () is a constant. Abel's solution begins with the principle of conservation of energy – since the particle is frictionless, and thus loses no energy to heat , its kinetic energy at any point is exactly equal to the difference in gravitational potential energy from its ...
In fluid dynamics, Rayleigh problem also known as Stokes first problem is a problem of determining the flow created by a sudden movement of an infinitely long plate from rest, named after Lord Rayleigh and Sir George Stokes. This is considered as one of the simplest unsteady problems that have an exact solution for the Navier-Stokes equations.
There is no accepted or widely-used general term for what is termed true-range multilateration here . That name is selected because it: (a) is an accurate description and partially familiar terminology (multilateration is often used in this context); (b) avoids specifying the number of ranges involved (as does, e.g., range-range; (c) avoids implying an application (as do, e.g., DME/DME ...