Search results
Results from the WOW.Com Content Network
The elements of an arithmetico-geometric sequence () are the products of the elements of an arithmetic progression (in blue) with initial value and common difference , = + (), with the corresponding elements of a geometric progression (in green) with initial value and common ratio , =, so that [4]
defines only one solution (), the so-called singular solution, whose graph is the envelope of the graphs of the general solutions. The singular solution is usually represented using parametric notation, as ( x ( p ) , y ( p ) ) {\displaystyle (x(p),y(p))} , where p = d y / d x {\displaystyle p=dy/dx} .
One particular solution is x = 0, y = 0, z = 0. Two other solutions are x = 3, y = 6, z = 1, and x = 8, y = 9, z = 2. There is a unique plane in three-dimensional space which passes through the three points with these coordinates, and this plane is the set of all points whose coordinates are solutions of the equation.
Some solutions of a differential equation having a regular singular point with indicial roots = and .. In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form ″ + ′ + = with ′ and ″.
Given a solution of the ideal membership problem, one obtains all the solutions by adding to it the elements of the module of syzygies. In other words, all the solutions are provided by the solution of these two partial problems. In the case of several equations, the same decomposition into subproblems occurs.
Since z = 1 − x, the solution of the hypergeometric equation at x = 1 is the same as the solution for this equation at z = 0. But the solution at z = 0 is identical to the solution we obtained for the point x = 0, if we replace each γ by α + β − γ + 1. Hence, to get the solutions, we just make this substitution in the previous results.
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.
In mathematics, an algebraic equation or polynomial equation is an equation of the form =, where P is a polynomial with coefficients in some field, often the field of the rational numbers. For example, x 5 − 3 x + 1 = 0 {\displaystyle x^{5}-3x+1=0} is an algebraic equation with integer coefficients and