Search results
Results from the WOW.Com Content Network
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.
A practical application is an experiment in which one measures current, I, and voltage, V, on a resistor in order to determine the resistance, R, using Ohm's law, R = V / I. Given the measured variables with uncertainties, I ± σ I and V ± σ V, and neglecting their possible correlation, the uncertainty in the computed quantity, σ R, is:
Experimental uncertainty analysis is a technique that analyses a derived quantity, based on the uncertainties in the experimentally measured quantities that are used in some form of mathematical relationship ("model") to calculate that derived quantity.
These values are used to calculate an E value for the estimate and a standard deviation (SD) as L-estimators, where: E = (a + 4m + b) / 6 SD = (b − a) / 6. E is a weighted average which takes into account both the most optimistic and most pessimistic estimates provided. SD measures the variability or uncertainty in the estimate.
This statistics -related article is a stub. You can help Wikipedia by expanding it.
In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.
Probability bounds analysis (PBA) is a collection of methods of uncertainty propagation for making qualitative and quantitative calculations in the face of uncertainties of various kinds. It is used to project partial information about random variables and other quantities through mathematical expressions.
expected time: the best estimate of the time required to accomplish an activity (te) or a path (TE), accounting for the fact that things don't always proceed as normal (the implication being that the expected time is the average time the task would require if the task were repeated on a number of occasions over an extended period of time).