enow.com Web Search

  1. Ad

    related to: vector calculus formula sheet derivatives and limits pdf version 3 5 character builder

Search results

  1. Results from the WOW.Com Content Network
  2. Vector calculus - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus

    Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, . [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.

  3. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The utility of the Feynman subscript notation lies in its use in the derivation of vector and tensor derivative identities, as in the following example which uses the algebraic identity C ⋅ (A × B) = (C × A)⋅ B: An alternative method is to use the Cartesian components of the del operator as follows:

  4. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In vector calculus the derivative of a vector y with respect to a scalar x is known as the tangent vector of the vector y, . Notice here that y : R 1 → R m . Example Simple examples of this include the velocity vector in Euclidean space , which is the tangent vector of the position vector (considered as a function of time).

  5. Green's identities - Wikipedia

    en.wikipedia.org/wiki/Green's_identities

    Calculus. In mathematics, Green's identities are a set of three identities in vector calculus relating the bulk with the boundary of a region on which differential operators act. They are named after the mathematician George Green, who discovered Green's theorem.

  6. Green's theorem - Wikipedia

    en.wikipedia.org/wiki/Green's_theorem

    In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C. It is the two-dimensional special case of Stokes' theorem (surface in R 3 {\displaystyle \mathbb {R} ^{3}} ).

  7. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    e. In vector calculus and differential geometry the generalized Stokes theorem (sometimes with apostrophe as Stokes' theorem or Stokes's theorem), also called the Stokes–Cartan theorem, [1] is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus.

  8. Divergence theorem - Wikipedia

    en.wikipedia.org/wiki/Divergence_theorem

    Advanced. Specialized. Miscellanea. v. t. e. In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, [1] is a theorem relating the flux of a vector field through a closed surface to the divergence of the field in the volume enclosed. More precisely, the divergence theorem states that the surface ...

  9. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    The divergence of a vector field extends naturally to any differentiable manifold of dimension n that has a volume form (or density) μ, e.g. a Riemannian or Lorentzian manifold. Generalising the construction of a two-form for a vector field on R 3, on such a manifold a vector field X defines an (n − 1)-form j = i X μ obtained by contracting ...

  1. Ad

    related to: vector calculus formula sheet derivatives and limits pdf version 3 5 character builder