Search results
Results from the WOW.Com Content Network
For example, a ratio of 3:2 is the same as 12:8. It is usual either to reduce terms to the lowest common denominator, or to express them in parts per hundred . If a mixture contains substances A, B, C and D in the ratio 5:9:4:2 then there are 5 parts of A for every 9 parts of B, 4 parts of C and 2 parts of D.
We can calculate s = tan B/2 = tan(π /4 − A/2) = (1 − r) / (1 + r) from the formula for the tangent of the difference of angles. Use of s instead of r in the above formulas will give the same primitive Pythagorean triple but with a and b swapped. Note that r and s can be reconstructed from a, b, and c using r = a / (b + c) and s = b / (a + c).
Interior angle Δθ = θ 1 −θ 2. The Pythagorean theorem is a special case of the more general theorem relating the lengths of sides in any triangle, the law of cosines, which states that where is the angle between sides and . [45] When is radians or 90°, then , and the formula reduces to the usual Pythagorean theorem.
Quadrant 3 (angles from 180 to 270 degrees, or π to 3π/2 radians): T angent and cotangent functions are positive in this quadrant. Quadrant 4 (angles from 270 to 360 degrees, or 3π/2 to 2π radians): C osine and secant functions are positive in this quadrant. Other mnemonics include: All S tations T o C entral [6]
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
In mathematics, the greatest common divisor (GCD), also known as greatest common factor (GCF), of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers x, y, the greatest common divisor of x and y is denoted . For example, the GCD of 8 and 12 is 4, that is, gcd (8, 12 ...
The golden ratio is also an algebraic number and even an algebraic integer. It has minimal polynomial. This quadratic polynomial has two roots, and. The golden ratio is also closely related to the polynomial. which has roots and As the root of a quadratic polynomial, the golden ratio is a constructible number.
Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula. which using factorial notation can be compactly expressed as.