Search results
Results from the WOW.Com Content Network
Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
Modular multiplicative inverse. In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. [1] In the standard notation of modular arithmetic this congruence is written as.
Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is: c = be mod m = d−e mod m, where e < 0 and b ⋅ d ≡ 1 (mod m). Modular exponentiation is efficient to compute, even for very large integers.
Rule of mixtures. Relation between properties and composition of a compound. The upper and lower bounds on the elastic modulus of a composite material, as predicted by the rule of mixtures. The actual elastic modulus lies between the curves. In materials science, a general rule of mixtures is a weighted mean used to predict various properties ...
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
Ramberg–Osgood relationship. The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain —that is, the stress–strain curve —in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening), showing a smooth elastic-plastic ...
The Weibull modulus is a dimensionless parameter of the Weibull distribution. It represents the width of a probability density function (PDF) in which a higher modulus is a characteristic of a narrower distribution of values. Use case examples include biological and brittle material failure analysis, where modulus is used to describe the ...