enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    A function f and its inverse f −1. Because f maps a to 3, the inverse f −1 maps 3 back to a. In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective, and if it exists, is denoted by.

  3. Open and closed maps - Wikipedia

    en.wikipedia.org/wiki/Open_and_closed_maps

    Open and closed maps. In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. [1][2][3] That is, a function is open if for any open set in the image is open in Likewise, a closed map is a function that maps closed sets to closed sets. [3][4] A map may be open ...

  4. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    Moore–Penrose inverse. In mathematics, and in particular linear algebra, the Moore–Penrose inverse ⁠ ⁠ of a matrix ⁠ ⁠, often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]

  5. Orthographic map projection - Wikipedia

    en.wikipedia.org/wiki/Orthographic_map_projection

    The inverse formulas are particularly useful when trying to project a variable defined on a (λ, φ) grid onto a rectilinear grid in (x, y). Direct application of the orthographic projection yields scattered points in ( x , y ), which creates problems for plotting and numerical integration .

  6. Inversive geometry - Wikipedia

    en.wikipedia.org/wiki/Inversive_geometry

    Inversive geometry. In geometry, inversive geometry is the study of inversion, a transformation of the Euclidean plane that maps circles or lines to other circles or lines and that preserves the angles between crossing curves. Many difficult problems in geometry become much more tractable when an inversion is applied.

  7. Local diffeomorphism - Wikipedia

    en.wikipedia.org/wiki/Local_diffeomorphism

    A map is a local diffeomorphism if and only if it is a smooth immersion (smooth local embedding) and an open map. The inverse function theorem implies that a smooth map f : X → Y {\displaystyle f:X\to Y} is a local diffeomorphism if and only if the derivative D f x : T x X → T f ( x ) Y {\displaystyle Df_{x}:T_{x}X\to T_{f(x)}Y} is a linear ...

  8. Open mapping theorem (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Open_mapping_theorem...

    In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem or the Banach theorem[1] (named after Stefan Banach and Juliusz Schauder), is a fundamental result that states that if a bounded or continuous linear operator between Banach spaces is surjective then it is an open map.

  9. Karnaugh map - Wikipedia

    en.wikipedia.org/wiki/Karnaugh_map

    A Karnaugh map (KM or K-map) is a diagram that can be used to simplify a Boolean algebra expression. Maurice Karnaugh introduced it in 1953 [ 1 ] [ 2 ] as a refinement of Edward W. Veitch 's 1952 Veitch chart , [ 3 ] [ 4 ] which itself was a rediscovery of Allan Marquand 's 1881 logical diagram [ 5 ] [ 6 ] (aka.