enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    A function f and its inverse f −1. Because f maps a to 3, the inverse f −1 maps 3 back to a. In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective, and if it exists, is denoted by.

  3. Conformal map - Wikipedia

    en.wikipedia.org/wiki/Conformal_map

    In mathematics, a conformal map is a function that locally preserves angles, but not necessarily lengths. More formally, let and be open subsets of . A function is called conformal (or angle-preserving) at a point if it preserves angles between directed curves through , as well as preserving orientation. Conformal maps preserve both angles and ...

  4. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    In terms of Lie theory, the Rodrigues' formula provides an algorithm to compute the exponential map from the Lie algebra so(3) to its Lie group SO (3). This formula is variously credited to Leonhard Euler, Olinde Rodrigues, or a combination of the two. A detailed historical analysis in 1989 concluded that the formula should be attributed to ...

  5. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    Moore–Penrose inverse. In mathematics, and in particular linear algebra, the Moore–Penrose inverse ⁠ ⁠ of a matrix ⁠ ⁠, often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]

  6. Inversive geometry - Wikipedia

    en.wikipedia.org/wiki/Inversive_geometry

    Inversive geometry. In geometry, inversive geometry is the study of inversion, a transformation of the Euclidean plane that maps circles or lines to other circles or lines and that preserves the angles between crossing curves. Many difficult problems in geometry become much more tractable when an inversion is applied.

  7. Möbius transformation - Wikipedia

    en.wikipedia.org/wiki/Möbius_transformation

    These transformations preserve angles, map every straight line to a line or circle, and map every circle to a line or circle. The Möbius transformations are the projective transformations of the complex projective line. They form a group called the Möbius group, which is the projective linear group PGL(2, C).

  8. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    Global version. The inverse function theorem is a local result; it applies to each point. A priori, the theorem thus only shows the function is locally bijective (or locally diffeomorphic of some class). The next topological lemma can be used to upgrade local injectivity to injectivity that is global to some extent.

  9. Local diffeomorphism - Wikipedia

    en.wikipedia.org/wiki/Local_diffeomorphism

    A map is a local diffeomorphism if and only if it is a smooth immersion (smooth local embedding) and an open map. The inverse function theorem implies that a smooth map f : X → Y {\displaystyle f:X\to Y} is a local diffeomorphism if and only if the derivative D f x : T x X → T f ( x ) Y {\displaystyle Df_{x}:T_{x}X\to T_{f(x)}Y} is a linear ...