Search results
Results from the WOW.Com Content Network
The sum of the ones digit, double the tens digit, four times the hundreds digit, and eight times the thousands digit is divisible by 16. 157,648: 7 × 8 + 6 × 4 + 4 × 2 + 8 = 96 17: Subtract 5 times the last digit from the rest. (Works because 51 is divisible by 17.) 221: 22 − 1 × 5 = 17. Add 12 times the last digit to the rest.
For example, 4 multiplied by 3, often written as and spoken as "3 times 4", can be calculated by adding 3 copies of 4 together: 3 × 4 = 4 + 4 + 4 = 12. {\displaystyle 3\times 4=4+4+4=12.} Here, 3 (the multiplier ) and 4 (the multiplicand ) are the factors , and 12 is the product .
24 (puzzle) The 24 puzzle is an arithmetical puzzle in which the objective is to find a way to manipulate four integers so that the end result is 24. For example, for the numbers 4, 7, 8, 8, a possible solution is . Note that all four numbers must be used exactly once. The problem has been played as a card game in Shanghai since the 1960s, [1 ...
Lagrange's four-square theorem, also known as Bachet's conjecture, states that every nonnegative integer can be represented as a sum of four non-negative integer squares. [1] That is, the squares form an additive basis of order four. where the four numbers are integers. For illustration, 3, 31, and 310 can be represented as the sum of four ...
Product of two numbers. Originally, a product was and is still the result of the multiplication of two or more numbers. For example, 15 is the product of 3 and 5. The fundamental theorem of arithmetic states that every composite number is a product of prime numbers, that is unique up to the order of the factors.
Elementary arithmetic is a branch of mathematics involving addition, subtraction, multiplication, and division. Due to its low level of abstraction, broad range of application, and position as the foundation of all mathematics, elementary arithmetic is generally the first branch of mathematics taught in schools. [1][2]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In particular, for a prime number p we have the explicit formula r 4 (p) = 8(p + 1). [1] Some values of r 4 (n) occur infinitely often as r 4 (n) = r 4 (2 m n) whenever n is even. The values of r 4 (n) can be arbitrarily large: indeed, r 4 (n) is infinitely often larger than . [1]