Search results
Results from the WOW.Com Content Network
The function e (−1/x 2) is not analytic at x = 0: the Taylor series is identically 0, although the function is not. If f ( x ) is given by a convergent power series in an open disk centred at b in the complex plane (or an interval in the real line), it is said to be analytic in this region.
Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.
3.1 Taylor series. 3.2 Derivative and integral. ... An expansion, [6] which converges more rapidly for all real values of x than a Taylor expansion, ...
In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function , the Taylor polynomial is the truncation at the order k {\textstyle k} of the Taylor series of the function.
Following a proposal by William Kahan, it may thus be useful to have a dedicated routine, often called expm1, which computes e x − 1 directly, bypassing computation of e x. For example, one may use the Taylor series: e x − 1 = x + x 2 2 + x 3 6 + ⋯ + x n n ! + ⋯ . {\displaystyle e^{x}-1=x+{\frac {x^{2}}{2}}+{\frac {x^{3}}{6}}+\cdots ...
Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. In fact, Borel's theorem implies that every power series is the Taylor series of some smooth function. In many situations, the center c is equal to zero, for instance for Maclaurin series.
e aX e bX = e (a + b)X; e X e −X = I; Using the above results, we can easily verify the following claims. If X is symmetric then e X is also symmetric, and if X is skew-symmetric then e X is orthogonal. If X is Hermitian then e X is also Hermitian, and if X is skew-Hermitian then e X is unitary.