Search results
Results from the WOW.Com Content Network
Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.
The unfolded protein response (UPR) is a cellular stress response related to the endoplasmic reticulum (ER) stress. [1] It has been found to be conserved between mammalian species, [2] as well as yeast [1] [3] and worm organisms. The UPR is activated in response to an accumulation of unfolded or misfolded proteins in the lumen of the
The endoplasmic reticulum (ER) is a part of a transportation system of the eukaryotic cell, and has many other important functions such as protein folding. The word endoplasmic means "within the cytoplasm", and reticulum is Latin for "little net".
GPT, a song on the album ...l, by Korean girl group STAYC Topics referred to by the same term This disambiguation page lists articles associated with the title GPT .
Cellular compartments in cell biology comprise all of the closed parts within the cytosol of a eukaryotic cell, usually surrounded by a single or double lipid layer membrane. These compartments are often, but not always, defined as membrane-bound organelles. The formation of cellular compartments is called compartmentalization.
ER retention refers to proteins that are retained in the endoplasmic reticulum, or ER, after folding; these are known as ER resident proteins. Protein localization to the ER often depends on certain sequences of amino acids located at the N terminus or C terminus. These sequences are known as signal peptides, molecular signatures, or sorting ...
Alanine transaminase (ALT), also known as alanine aminotransferase (ALT or ALAT), formerly serum glutamate-pyruvate transaminase (GPT) or serum glutamic-pyruvic transaminase (SGPT), is a transaminase enzyme (EC 2.6.1.2) that was first characterized in the mid-1950s by Arthur Karmen and colleagues. [1]
The implications for the division in the four types are especially manifest at the time of translocation and ER-bound translation, when the protein has to be passed through the ER membrane in a direction dependent on the type. [citation needed] Group I and II transmembrane proteins have opposite final topologies.