Search results
Results from the WOW.Com Content Network
The field planes are usually denoted by PG(2, q) where PG stands for projective geometry, the "2" is the dimension and q is called the order of the plane (it is one less than the number of points on any line). The Fano plane, discussed below, is denoted by PG(2, 2). The third example above is the projective plane PG(2, 3). The Fano plane.
The three possible plane-line relationships in three dimensions. (Shown in each case is only a portion of the plane, which extends infinitely far.) In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is ...
Thus, for 3-dimensional spaces, one needs to show that (1*) every point lies in 3 distinct planes, (2*) every two planes intersect in a unique line and a dual version of (3*) to the effect: if the intersection of plane P and Q is coplanar with the intersection of plane R and S, then so are the respective intersections of planes P and R, Q and S ...
The Fano plane can be extended in a third dimension to form a three-dimensional projective space, denoted by PG(3, 2). It has 15 points, 35 lines, and 15 planes and is the smallest three-dimensional projective space. [16] It also has the following properties: [17] Each point is contained in 7 lines and 7 planes.
A 3D projection (or graphical projection) is a design technique used to display a three-dimensional (3D) object on a two-dimensional (2D) surface. These projections rely on visual perspective and aspect analysis to project a complex object for viewing capability on a simpler plane.
Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space. More general three-dimensional spaces are called 3-manifolds. The term may also refer colloquially to a subset of space, a three-dimensional region (or 3D domain), [1] a solid figure.
A plane duality is a map from a projective plane C = (P, L, I) to its dual plane C ∗ = (L, P, I ∗) (see § Principle of duality above) which preserves incidence. That is, a plane duality σ will map points to lines and lines to points (P σ = L and L σ = P) in such a way that if a point Q is on a line m (denoted by Q I m) then Q I m ⇔ m ...
In mathematics, a plane is a two-dimensional space or flat surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. When working exclusively in two-dimensional Euclidean space, the definite article is used, so the Euclidean plane refers to the ...