Search results
Results from the WOW.Com Content Network
In physics, a Galilean transformation is used to transform between the coordinates of two reference frames which differ only by constant relative motion within the constructs of Newtonian physics. These transformations together with spatial rotations and translations in space and time form the inhomogeneous Galilean group (assumed throughout ...
Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames of reference. Galileo Galilei first described this principle in 1632 in his Dialogue Concerning the Two Chief World Systems using the example of a ship travelling at constant velocity, without rocking, on a smooth sea; any observer below the deck would not be able to tell whether the ...
Galilean electromagnetism is a formal electromagnetic field theory that is consistent with Galilean invariance.Galilean electromagnetism is useful for describing the electric and magnetic fields in the vicinity of charged bodies moving at non-relativistic speeds relative to the frame of reference.
Also, as length contraction does not affect the perpendicular dimensions of an object, the following remain the same as in the Galilean transformation: ′ = ′ = Finally, to determine how t and t′ transform, substituting the x↔x′ transformation into its inverse:
An overriding requirement on the descriptions in different frameworks is that they be consistent.Consistency is an issue because Newtonian mechanics predicts one transformation (so-called Galilean invariance) for the forces that drive the charges and cause the current, while electrodynamics as expressed by Maxwell's equations predicts that the fields that give rise to these forces transform ...
In nonrelativistic quantum mechanics, an account can be given of the existence of mass and spin (normally explained in Wigner's classification of relativistic mechanics) in terms of the representation theory of the Galilean group, which is the spacetime symmetry group of nonrelativistic quantum mechanics.
After the development of quantum mechanics, Weyl, Vladimir Fock [2] and Fritz London replaced the simple scale factor with a complex quantity and turned the scale transformation into a change of phase, which is a U(1) gauge symmetry. This explained the electromagnetic field effect on the wave function of a charged quantum mechanical particle.
The Galilei-covariant tensor formulation is a method for treating non-relativistic physics using the extended Galilei group as the representation group of the theory. It is constructed in the light cone of a five dimensional manifold.