enow.com Web Search

  1. Ad

    related to: 3 dimensional cross sectional area equation examples geometry

Search results

  1. Results from the WOW.Com Content Network
  2. Cross section (geometry) - Wikipedia

    en.wikipedia.org/wiki/Cross_section_(geometry)

    The cross-sectional area (′) of an object when viewed from a particular angle is the total area of the orthographic projection of the object from that angle. For example, a cylinder of height h and radius r has A ′ = π r 2 {\displaystyle A'=\pi r^{2}} when viewed along its central axis, and A ′ = 2 r h {\displaystyle A'=2rh} when viewed ...

  3. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    The horizontal cross-section of the region bounded by two cycloidal arcs traced by a point on the same circle rolling in one case clockwise on the line below it, and in the other counterclockwise on the line above it, has the same length as the corresponding horizontal cross-section of the circle.

  4. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]

  5. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    The formula for the surface area of a sphere was first obtained by Archimedes in his work On the Sphere and Cylinder. The formula is: [6] A = 4πr 2 (sphere), where r is the radius of the sphere. As with the formula for the area of a circle, any derivation of this formula inherently uses methods similar to calculus.

  6. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    A central cross section of a regular tetrahedron is a square. The two skew perpendicular opposite edges of a regular tetrahedron define a set of parallel planes. When one of these planes intersects the tetrahedron the resulting cross section is a rectangle. [11] When the intersecting plane is near one of the edges the rectangle is long and skinny.

  7. Annulus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Annulus_(mathematics)

    As a corollary of the chord formula, the area bounded by the circumcircle and incircle of every unit convex regular polygon is π /4 The area of an annulus is determined by the length of the longest line segment within the annulus, which is the chord tangent to the inner circle, 2 d in the accompanying diagram.

  8. Vector area - Wikipedia

    en.wikipedia.org/wiki/Vector_area

    In 3-dimensional geometry and vector calculus, an area vector is a vector combining an area quantity with a direction, thus representing an oriented area in three dimensions. Every bounded surface in three dimensions can be associated with a unique area vector called its vector area .

  9. Hypersurface - Wikipedia

    en.wikipedia.org/wiki/Hypersurface

    Hypersurfaces share, with surfaces in a three-dimensional space, the property of being defined by a single implicit equation, at least locally (near every point), and sometimes globally. A hypersurface in a (Euclidean, affine, or projective) space of dimension two is a plane curve. In a space of dimension three, it is a surface.

  1. Ad

    related to: 3 dimensional cross sectional area equation examples geometry