Search results
Results from the WOW.Com Content Network
High-altitude adaptation in humans is an instance of evolutionary modification in certain human populations, including those of Tibet in Asia, the Andes of the Americas, and Ethiopia in Africa, who have acquired the ability to survive at altitudes above 2,500 meters (8,200 ft). [1]
The effects of high altitude on humans are mostly the consequences of reduced partial pressure of oxygen in the atmosphere. The medical problems that are direct consequence of high altitude are caused by the low inspired partial pressure of oxygen, which is caused by the reduced atmospheric pressure, and the constant gas fraction of oxygen in ...
Human intelligence can be measured according to an extensive number of tests and criteria, ranging from academic, social, and emotional fields. While there is no clear consensus on a definition of human intelligence, there are common themes among those that exist, summarized generally as "Intelligence measures an agent’s ability to achieve goals in a wide range of environments". [14]
Brain areas that undergo significant post-natal development, such as those involved in memory and emotion are more vulnerable to effects of early life stress. [58] [64] For example, the hippocampus continues to develop after birth and is a structure that is affected by childhood maltreatment. [64]
An example of tangential migration is the movement of interneurons from the ganglionic eminence to the cerebral cortex. One example of ongoing tangential migration in a mature organism, observed in some animals, is the rostral migratory stream connecting subventricular zone and olfactory bulb.
The adaptation of humans to high altitude is an example of natural selection in action. [2] High-altitude adaptations provide examples of convergent evolution, with adaptations occurring simultaneously on three continents. Tibetan humans and Tibetan domestic dogs share a genetic mutation in EPAS1, but it has not been seen in Andean humans. [3]
Cortical white matter increases from childhood (~9 years) to adolescence (~14 years), most notably in the frontal and parietal cortices. [8] Cortical grey matter development peaks at ~12 years of age in the frontal and parietal cortices, and 14–16 years in the temporal lobes (with the superior temporal cortex being last to mature), peaking at about roughly the same age in both sexes ...
The expensive tissue hypothesis (ETH) relates brain and gut size in evolution (specifically in human evolution).It suggests that in order for an organism to evolve a large brain without a significant increase in basal metabolic rate (as seen in humans), the organism must use less energy on other expensive tissues; the paper introducing the ETH suggests that in humans, this was achieved by ...