Search results
Results from the WOW.Com Content Network
When a set S i that has already been chosen is split by a refinement, only one of the two resulting sets (the smaller of the two) needs to be chosen again; in this way, each state participates in the sets X for O(s log n) refinement steps and the overall algorithm takes time O(ns log n), where n is the number of initial states and s is the size ...
Given such an instance, construct an instance of Partition in which the input set contains the original set plus two elements: z 1 and z 2, with z 1 = sum(S) and z 2 = 2T. The sum of this input set is sum(S) + z 1 + z 2 = 2 sum(S) + 2T, so the target sum for Partition is sum(S) + T. Suppose there exists a solution S′ to the SubsetSum instance
In computational complexity theory, the set splitting problem is the following decision problem: given a family F of subsets of a finite set S, decide whether there exists a partition of S into two subsets S 1, S 2 such that all elements of F are split by this partition, i.e., none of the elements of F is completely in S 1 or S 2.
Therefore, the remaining 3-sets can be partitioned into two groups: n 3-sets containing the items u ij, and n 3-sets containing the items u ij '. In each matching pair of 3-sets, the sum of the two pairing items u ij +u ij ' is 44T+4, so the sum of the four regular items is 84T+4. Therefore, from the four regular items, we construct a 4-set in ...
For example, if all input values are positive and bounded by some constant C, then B is at most N C, so the time required is (). This solution does not count as polynomial time in complexity theory because B − A {\displaystyle B-A} is not polynomial in the size of the problem, which is the number of bits used to represent it.
For many problems, relaxing the equality of split variables allows the system to be broken down, enabling each subsystem to be solved separately. This significantly reduces computation time and memory usage. Solving the relaxed problem with variable splitting can give an approximate solution to the initial problem.
From January 2008 to December 2012, if you bought shares in companies when E. William Barnett joined the board, and sold them when he left, you would have a 57.6 percent return on your investment, compared to a -2.8 percent return from the S&P 500.
A generalization of the notion of a set is that of a multiset or bag, which is similar to a set but allows repeated ("equal") values (duplicates). This is used in two distinct senses: either equal values are considered identical, and are simply counted, or equal values are considered equivalent, and are stored as distinct items. For example ...