enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Positive semidefinite - Wikipedia

    en.wikipedia.org/wiki/Positive_semidefinite

    Print/export Download as PDF; Printable version; In other projects ... In mathematics, positive semidefinite may refer to: Positive semidefinite function ...

  3. Positive operator - Wikipedia

    en.wikipedia.org/wiki/Positive_operator

    In mathematics (specifically linear algebra, operator theory, and functional analysis) as well as physics, a linear operator acting on an inner product space is called positive-semidefinite (or non-negative) if, for every ⁡ (), , and , , where ⁡ is the domain of .

  4. Definite quadratic form - Wikipedia

    en.wikipedia.org/wiki/Definite_quadratic_form

    According to that sign, the quadratic form is called positive-definite or negative-definite. A semidefinite (or semi-definite) quadratic form is defined in much the same way, except that "always positive" and "always negative" are replaced by "never negative" and "never positive", respectively.

  5. Peres–Horodecki criterion - Wikipedia

    en.wikipedia.org/wiki/Peres–Horodecki_criterion

    As the transposition map preserves eigenvalues, the spectrum of () is the same as the spectrum of , and in particular () must still be positive semidefinite. Thus must also be positive semidefinite. This proves the necessity of the PPT criterion.

  6. Positive form - Wikipedia

    en.wikipedia.org/wiki/Positive_form

    A form is called strongly positive if it is a linear combination of products of semi-positive forms, with positive real coefficients. A real (p, p) -form η {\displaystyle \eta } on an n -dimensional complex manifold M is called weakly positive if for all strongly positive (n-p, n-p) -forms ζ with compact support, we have ∫ M η ∧ ζ ≥ 0 ...

  7. Hilbert's seventeenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_seventeenth_problem

    A result of Albrecht Pfister [8] shows that a positive semidefinite form in n variables can be expressed as a sum of 2 n squares. [9] Dubois showed in 1967 that the answer is negative in general for ordered fields. [10] In this case one can say that a positive polynomial is a sum of weighted squares of rational functions with positive ...

  8. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can be seen from the following simple derivation:

  9. Trace inequality - Wikipedia

    en.wikipedia.org/wiki/Trace_inequality

    Let denote the space of Hermitian matrices, + denote the set consisting of positive semi-definite Hermitian matrices and + + denote the set of positive definite Hermitian matrices. For operators on an infinite dimensional Hilbert space we require that they be trace class and self-adjoint , in which case similar definitions apply, but we discuss ...