enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Slack variable - Wikipedia

    en.wikipedia.org/wiki/Slack_variable

    Slack variables give an embedding of a polytope into the standard f-orthant, where is the number of constraints (facets of the polytope). This map is one-to-one (slack variables are uniquely determined) but not onto (not all combinations can be realized), and is expressed in terms of the constraints (linear functionals, covectors).

  3. Structured support vector machine - Wikipedia

    en.wikipedia.org/wiki/Structured_support_vector...

    Because the regularized risk function above is non-differentiable, it is often reformulated in terms of a quadratic program by introducing one slack variable for each sample, each representing the value of the maximum. The standard structured SVM primal formulation is given as follows.

  4. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    To keep the computational load reasonable, the mappings used by SVM schemes are designed to ensure that dot products of pairs of input data vectors may be computed easily in terms of the variables in the original space, by defining them in terms of a kernel function (,) selected to suit the problem. [10]

  5. Least-squares support vector machine - Wikipedia

    en.wikipedia.org/wiki/Least-squares_support...

    Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.

  6. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of the hinge-loss function and L2 norm of the learned weights. This strategy avoids overfitting via Tikhonov regularization and in the L2 norm sense and also corresponds to minimizing the bias and variance of our estimator ...

  7. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    with v the Lagrange multipliers on the non-negativity constraints, λ the multipliers on the inequality constraints, and s the slack variables for the inequality constraints. The fourth condition derives from the complementarity of each group of variables (x, s) with its set of KKT vectors (optimal Lagrange multipliers) being (v, λ). In that case,

  8. Semidefinite programming - Wikipedia

    en.wikipedia.org/wiki/Semidefinite_programming

    A linear programming problem is one in which we wish to maximize or minimize a linear objective function of real variables over a polytope.In semidefinite programming, we instead use real-valued vectors and are allowed to take the dot product of vectors; nonnegativity constraints on real variables in LP (linear programming) are replaced by semidefiniteness constraints on matrix variables in ...

  9. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    For less-than or equal constraints, introduce slack variables s i so that all constraints are equalities. Solve the problem using the usual simplex method. For example, x + y ≤ 100 becomes x + y + s 1 = 100, whilst x + y ≥ 100 becomes x + y − s 1 + a 1 = 100. The artificial variables must be shown to be 0.