Search results
Results from the WOW.Com Content Network
Forming aldehydes from carboxylic acid derivatives is challenging because weaker reducing agents (NaBH 4) are often very slow at reducing esters and carboxylic acids, whereas stronger reducing agents (LiAlH 4) immediately reduce the formed aldehyde to an alcohol. [10] Conversion to thioester followed by Fukuyama reduction
The complex can reduce carboxylic acids to alcohols and is a common route for the reduction of amino acids to amino alcohols [3] (e.g. valinol). It adds across alkenes to give organoboron compounds that are useful intermediates. [4]
Unlike acid-catalyzed ester hydrolysis, it is not an equilibrium reaction and proceeds to completion. Hydroxide ion attacks the carbonyl carbon to give a tetrahedral intermediate, which then expels an alkoxide ion. The resulting carboxylic acid quickly protonates the alkoxide ion to give a carboxylate ion and an alcohol. [1]
The alkoxide ion is a strong base so the proton is transferred from the carboxylic acid to the alkoxide ion, creating an alcohol: saponification part III In a classic laboratory procedure, the triglyceride trimyristin is obtained by extracting it from nutmeg with diethyl ether .
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
Clemmensen reduction is a chemical reaction described as a reduction of ketones or aldehydes to alkanes using zinc amalgam and concentrated hydrochloric acid (HCl). [1] [2] This reaction is named after Erik Christian Clemmensen, a Danish-American chemist. [3] Scheme 1: Reaction scheme of Clemmensen Reduction.
Under ideal conditions the reaction produces 50% of both the alcohol and the carboxylic acid (it takes two aldehydes to produce one acid and one alcohol). [5] This can be economically viable if the products can be separated and both have a value; the commercial conversion of furfural into furfuryl alcohol and 2-furoic acid is an example of this ...
Lithium borohydride (LiBH 4) is a borohydride and known in organic synthesis as a reducing agent for esters.Although less common than the related sodium borohydride, the lithium salt offers some advantages, being a stronger reducing agent and highly soluble in ethers, whilst remaining safer to handle than lithium aluminium hydride.