Search results
Results from the WOW.Com Content Network
Sorting small arrays optimally (in the fewest comparisons and swaps) or fast (i.e. taking into account machine-specific details) is still an open research problem, with solutions only known for very small arrays (<20 elements). Similarly optimal (by various definitions) sorting on a parallel machine is an open research topic.
Bucket sort, or bin sort, is a sorting algorithm that works by distributing the elements of an array into a number of buckets. Each bucket is then sorted individually, either using a different sorting algorithm, or by recursively applying the bucket sorting algorithm.
In computer science, integer sorting is the algorithmic problem of sorting a collection of data values by integer keys. Algorithms designed for integer sorting may also often be applied to sorting problems in which the keys are floating point numbers, rational numbers, or text strings. [1]
Such a component or property is called a sort key. For example, the items are books, the sort key is the title, subject or author, and the order is alphabetical. A new sort key can be created from two or more sort keys by lexicographical order. The first is then called the primary sort key, the second the secondary sort key, etc.
The best case input is an array that is already sorted. In this case insertion sort has a linear running time (i.e., O(n)).During each iteration, the first remaining element of the input is only compared with the right-most element of the sorted subsection of the array.
Sorted arrays are the most space-efficient data structure with the best locality of reference for sequentially stored data. [citation needed]Elements within a sorted array are found using a binary search, in O(log n); thus sorted arrays are suited for cases when one needs to be able to look up elements quickly, e.g. as a set or multiset data structure.
Block sort begins by performing insertion sort on groups of 16–31 items in the array. Insertion sort is an O(n 2) operation, so this leads to anywhere from O(16 2 × n/16) to O(31 2 × n/31), which is O(n) once the constant factors are omitted. It must also apply an insertion sort on the second internal buffer after each level of merging is ...
Here input is the input array to be sorted, key returns the numeric key of each item in the input array, count is an auxiliary array used first to store the numbers of items with each key, and then (after the second loop) to store the positions where items with each key should be placed, k is the maximum value of the non-negative key values and ...